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Brownian dynamics simulations in hydrogels using an adaptive time-stepping algorithm
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The adaptive time-stepping algorithm for Brownian simulation of solute diffusion in three-dimensional
complex geometries previously developed by the authors of this paper was applied to heterogeneous three-
dimensional polymer hydrogel structures. The simulations were performed on reconstructed three-dimensional
hydrogels. The obstruction effect from the gel strands on water and diffusion of dendrimers with different sizes
were determined by simulations and compared with experimental nuclear magnetic resonance diffusometry
data obtained from the same material. It was concluded that obstruction alone cannot explain the observed
diffusion rates, but an interaction between the dendrimers and the gel strands should be included in the
simulations. The effect of a sticky-wall interaction potential with geometrically distributed residence times on
the diffusion rate has been studied. It was found that sticky-wall interaction is a possible explanation for the
discrepancy between simulated and experimental diffusion data for dendrimers of different sizes diffusing in

hydrogels.
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I. INTRODUCTION

It is important to understand diffusion mechanisms of sol-
utes in polymer-based hydrogels for the development of
many industrial applications. In the pharmaceutical industry,
for instance, the future most likely involves more sophisti-
cated delivery systems. In order to decrease the time it takes
for new drugs to reach the market it is very important from a
drug delivery point of view to understand the intrinsic cou-
pling between the physical properties of the solute or drug
and the structure of the surrounding matrix in which the
solute or drug is incorporated. Fundamental understanding of
diffusion mechanisms in polymer gels is important also in
other applications such as hygiene materials for instance.
Here the swelling rate depends to a large extent on the flow
and diffusion rates of small solutes into a polymer-based
material. In future hygiene materials it may be foreseen that
the material also will include other functions such as skin
therapy and/or clinical testing, providing the possibility of
early disease warning. Thus, a basic understanding of the
processes governing solvent, solute, and polymer dynamics
in these materials is of prime interest.

Previous works that combine microscopy and nuclear
magnetic resonance (NMR) diffusometry have shown that
there exists a strong correlation between the structure of the
surrounding material matrix and the molecular diffusion
properties in both hydrogels and emulsions [1,2]. There have
been numerous attempts in the literature to theoretically
model solute diffusion in hydrogels [3-5]. To our knowl-
edge, however, a model has not yet been presented that suc-
cessfully predicts diffusivity of small and large solutes in
dilute and concentrated polymer gels. Some of the models
presented work well for small solutes in crowded polymer
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solutions or gels and some work for small solutes in dilute
polymer solutions or gels. There are many underlying prob-
lems with respect to obtaining a general model for predicting
diffusivity in all types of systems. One of the largest prob-
lems is to deal with structural heterogeneity of porous mate-
rials.

In this paper a different approach is undertaken for im-
proving the understanding of diffusion mechanisms in poly-
mer gels. We argue that due to matrix heterogeneity it will be
virtually impossible to find a theory that will predict mass
transport based on material parameters for all combinations
of materials and solutes. The approach undertaken is rather
pragmatic at this stage and it is based on the use of Brownian
motion simulations of solute diffusion in a three-dimensional
polymer gel network structure [6,7]. In a previous paper [8],
a statistical mathematical method was developed for recon-
structing the three-dimensional structure of polymer gels
based solely on two-dimensional transmission electron mi-
croscopy micrographs. This reconstructed three-dimensional
structure is used here as the matrix for solute diffusion. The
diffusion simulation used is a newly developed adaptive
time-stepping algorithm presented in [9]. The effect of the
dynamics of the polymer itself is here considered to be zero.
Hence the local diffusion rate of a solute depends on the
motion of the solute molecules themselves, on interactions
between the polymer matrix and the solute, and also on the
effective obstruction of the polymer material. In this paper
the focus is on Brownian motion simulations of water and
different-sized dendrimers in three-dimensional hydrogels,
and we compare the resulting obstruction factors with ex-
perimental obstruction factors obtained using NMR diffuso-
metry. Dendrimers are dendritic polymer molecules that are
well suited for determination of the effects of structure and
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interaction on the diffusion properties in polymer gels since
the size and surface properties of dendrimers can be easily
controlled. In addition, dendrimers are very monodisperse
and they cannot reptate as common polymers.

II. NMR DIFFUSOMETRY
A. Theory

A common method to obtain diffusion constants, or dis-
tribution in diffusion constants, is the NMR diffusometry
(NMRD) method. The method as such is relatively fast; it
does not involve any labeling of molecules, atoms, or nuclei.
It is noninvasive and rather simple to perform on modern
NMR spectrometers since these most often are equipped
with pulsed field gradient capabilities. NMRD has the advan-
tage that the observation time may be easily changed to ob-
tain the time-dependent diffusion constant and, in the best-
case scenario, the long-time diffusion constant at long
enough observation times. Today the method is limited to
observation times between 0.01 and 10 s. When monitoring
diffusion in crowded materials the experiment is usually car-
ried out by the so-called stimulated echo technique. By this
pulse sequence and for sine-shaped gradient pulses the nor-
malized signal intensity echo decay for monodisperse and
freely diffusing molecules follows the equation

(g0 67.T) = - ( T) ( 27)
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where g is the gradient strength, A the observation time, &
the duration of the gradients, y the gyromagnetic ratio, 7 the
separation between the two first radio-frequency pulses, and
T the time separation between the second and third radio-
frequency pulses. 7 is the longitudinal relaxation time and
T, the transverse relaxation time. When keeping the relax-
ation parameters constant and defining the k parameter as k
=v2g*8(4A-6)/ 7, Eq. (1) may be written as

/Iy = exp(— kD).

Polymers are always polydisperse, and one common way to
model this is to assume a distribution in diffusion coeffi-
cients, P(D), and integrate over all diffusion constants ac-
cording to

Ul = f ’ P(D)exp(- kD)dD. 2)
0

A commonly used distribution for polymers is the log-
normal density function:

P(D) = — exp
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where D,, is the mass-weighted median self-diffusion coeffi-
cient and ay,, p is the standard deviation of the logarithm of
the diffusion coefficient [10]. A mean diffusion coefficient
can then be calculated from (D)=D,, exp(o-ﬁ)g p/2) after fit-
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ting a combination of (2) and (3) to the data by using a
Levenberg-Marquardt fitting routine.

Brownian dynamic simulations are capable of providing
the NMR echo attenuation without relying on the short gra-
dient pulse approximation [11]. For the pulse sequence com-
monly used for NMR diffusometry, the simulated phase shift
¢ caused by the diffusion of molecule i is given by

1+6 1H+A+8
bi= yg( f z(t)dr - f z,-(t)dt>
t H+A

1
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where ¢, is the time of the application of the first gradient
pulse. In the discretization procedure, the notation z;=z(t)
with j=a,b, and c for t=1,,5, and A is used [11]. The dis-
tribution of phase shifts P(¢) was obtained by simulating N
spin trajectories using this adaptive time-stepping algorithm.
Finally, the NMR echo attenuation was calculated from

© N
E= f P(@)cos( i =3 cos g
_% i=1

It is well known that the initial slope of the echo decay is
directly related to the mean-square displacement [12]. There-
fore, the apparent diffusion coefficient can be estimated from
the initial slope of the echo decay. Alternatively, it is possible
to estimate the apparent diffusion coefficient based on the
mean-square displacement obtained from the starting posi-
tion and the end position of each particle trajectory.

B. Experiments

The NMR diffusometry experiments were performed on a
Varian Unity Inova 500 MHz spectrometer equipped with a
diffusion probe supplied by DOTY Science. The probe pro-
vides 4.8 T/m at maximum current of 10 A. The stimulated
echo pulse sequence was used in all experiments and the
gradient pulse length was 4 ms. The maximum gradient
strength was varied so at least a tenfold decrease in signal
intensity was obtained.

III. RESULTS

The main goals with the adaptive time-stepping algorithm
developed in [9] were to increase both the accuracy and
speed of Brownian dynamics simulations, to be able to in-
clude the effect of simple particle-to-wall interactions, and to
make the results useful for comparison with experimental
NMR diffusometry results. This is done by adaptively in-
creasing the time step and thereby the average spatial step
taken far away from any structure that can perturb the diffu-
sion trajectory. In contrast, if the diffusant on the other hand
is situated close to a structure so that the structure may in-
terfere with the trajectory with a certain probability, then the
trajectory will be resolved more accurately. The idea is to put
computational power where it is most needed.

In [9], the adaptive algorithm was validated in an open
geometry in the form of spheres on a cubic lattice and for
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FIG. 1. Simulated NMR diffusometry echo decays E(q) for free
diffusion using the adaptive time-stepping algorithm developed in
[9]. Results from simulations with different numbers of particles in
comparison to the analytical solution (4) are shown. n is the number
of particles used in the simulations. A=0.1s, D=2X 10" m?/s, §
=107 s, and y=26.751 X 10° rad/Ts.

particles diffusing in a one-dimensional interaction potential
[13]. Here, we will use the algorithm for comparison with
NMR diffusometry data for systems with analytical solutions
regarding the NMR signal and the diffusion equation. The
large step is, however, to extend the methodology to real
materials. Here, simulation results on diffusion of dendrim-
ers with different sizes in three-dimensional polymer hydro-
gel structures will be presented and compared with experi-
mental NMR diffusometry data.

A. Diffusion in systems with known analytical solution for
NMR diffusometry

1. Free diffusion

The propagator P(r,|r,A) is defined as the probability to
find a molecule at a certain position r, after a certain obser-
vation time A, given that the molecule started at position r,
at time zero. Note that the propagator is basically the van
Hove function [14]. In a system with no boundaries and a
Gaussian propagator, i.e., free diffusion, the echo decay us-
ing rectangular-shaped gradient pulses is described by [12]

E =exp[- 417°¢*D(A - 8/3)], (4)

where g=7ygd/2, A is the observation time, and D is the
diffusion coefficient. The results for freely diffusing particles
are shown in Fig. 1. The echo decays obtained from simula-
tions are nearly identical to (4) as the number of particles
exceeds 10°% The relation between the estimated diffusion
coefficient and the diffusion coefficient put into the simula-
tions, D/ D, is equal to 1.00 from evaluating both the initial
slope of the echo decay and the actual mean-square displace-
ment. D is the mean-squared displacement obtained using the
adaptive time-stepping algorithm and D, is the analytical or
exact diffusion coefficient. Figure 1 shows that approxi-
mately 10°—10° particles are needed to obtain the fine details
in the echo-decay at low intensities and high g values. How-
ever, if the main interest is to determine the diffusion coef-
ficient, then approximately 10* particles are sufficient.
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FIG. 2. Simulated NMR diffusometry echo decay for diffusion
in a closed box using the adaptive time-stepping algorithm devel-
oped in [9]. The result of the simulation is compared with the ana-
lytical solution in (5). A=0.1's, D=2X 10" m?/s, §=2 ms, time
step during gradients 2.5 X 1077 s, voxel edge size 140 nm, box size
1003 voxels, and 5 X 10* particles.

2. Diffusion in a confined geometry

Within the short gradient pulse limit and for arbitrary ge-
ometries, the echo decay can be written as [15]

E(5,A,g) = f f p(ro) P(ro|r, A)explivg 8(r — ry)ldr dry,
where p(rg) is the spin density. To apply this relation to dif-
ferent geometries, knowledge about the specific propagator

is required. The echo decay in a cube can be written as
[11,12]

E(5,A.g) = 2 oc0@mab)] _(;Z(z;qm + (4rqL)?
S 1= (=1 cos(2mqL) ( nzﬂﬁDAﬂ
| Tm? - @mg?? P\ 12 ’
(5)

where L is the length between the walls of the cube. To attain
the diffraction pattern described in the echo decay above it is
necessary to use a diffusion time A>0.2L%/D. The results
from the simulations in a closed box in comparison to the
analytical solution are presented in Fig. 2. At low g values
and intensities down to 1072, the analytical solution and the
simulations match very well even if only 5X 10* particles
are used to simulate the echo decay. However, at high ¢
values beyond the second minimum, the simulation starts to
lack in precision. The reason for this is the limited number of
particles used. The simulation for the free diffusion indicated
that at least 103 particles are needed in order to further re-
solve the fine details in the echo decay.

B. Brownian simulations in three-dimensional gel structures

In previous work by Nisslert e al. [8], three-dimensional
structures of sepharose gels have been identified by Markov
chain Monte Carlo simulations based on image statistics
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FIG. 3. (Color online) Identified three-dimensional sepharose
gel structure. The side length of the cube is 800 nm.

from two-dimensional transmission electron microscopy mi-
crographs. An example of an identified three-dimensional
sepharose gel structure is shown in Fig. 3. The gel structure
is very heterogeneous with large open regions and much
more crowded and dense regions.

The objective of the performed Brownian motion simula-
tions is to compare the gel strand obstruction effect on den-
drimer and water obtained by the adaptive time-stepping al-
gorithm with NMR diffusometry data on the same materials.
Dendrimer diffusion in gels has been studied previously by
[16] using NMR diffusometry. Here, two different dendrimer
generations, G, and Gg, with different molecular weights and
sizes were studied. Assuming a spherical shape, the radii of
dendrimers G, and G are approximately 3 and 8 nm, respec-
tively.

1. Time-dependent obstruction in hydrogels

A lot of information about the structure in a certain ma-
terial can be obtained by investigating the time dependence
of the diffusion process. The time-dependent obstruction fac-
tor for dendrimers G, and G diffusing in the same gel struc-
tures is shown in Fig. 4. The obstruction factor A is the ratio
between the obstructed diffusion coefficient and the nonob-
structed diffusion coefficient D/D,. NMR diffusometry has
been used to measure the diffusion coefficient in pure water
and these values were used as D,. At very short observation
times, the dendrimers have not diffused far from their start-
ing positions and few have encountered any gel strands.
Therefore, the measured diffusion rate will coincide with the
diffusion rate in pure water at very short observation times.
However, at intermediate observation times the obstruction
effect is more pronounced. This leads to a reduction of the
effective diffusion rate.

The sizes of the dendrimer and water molecules are
handled in the simulations by padding of the gel structure
with the average radius of each type of molecule. Initially,
the simulations of both dendrimers and water are performed
by assuming no interactions between the surrounding gel
matrix structure and diffusants, i.e., there will be a hard-core
interaction between the diffusants and the gel matrix. At long
enough observation times the global diffusion coefficient is
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FIG. 4. Simulated obstruction factor D/Dy, as a function of ob-
servation time for dendrimers G, and G¢ in an identified 4%
sepharose gel. The diffusion coefficients in pure water are Dg,
=5.61 X107 m?/s and Dge=2.52X 107 m?/s, respectively. The
number of particles used in the adaptive simulation are ng,=4
X 10* and nge=1.5x 10,

obtained. The global diffusion coefficient is obtained at
shorter observation times for dendrimer G, than for den-
drimer Gg. The most obvious reason that dendrimer G, dif-
fuses faster than dendrimer G is its smaller size. Dendrimer
G, thus samples all relevant gel structure more quickly than
dendrimer G4 and reaches the long-time limit more rapidly.

2. Obstruction in gels

Three different gel simulations were carried out. The first
one simulated water diffusion. Water is small enough to be
approximated by a single point; hence the original gel struc-
ture, here represented as R(, was used. The two other gel
structures are padded with 3 and 8 nm larger radius of the
gel strands, R; and Ry, which correspond to the G, and Gg
dendrimers. Water, dendrimer G,, and dendrimer G4 were all
simulated on three different identified gel structures. The re-
sults from the simulations and corresponding experimental
NMR diffusometry results are displayed in Table I. The ob-
struction factor is defined as the ratio between the apparent
diffusion coefficient obtained from simulations in gels and
the diffusion coefficient in pure water. All simulated diffu-
sion coefficients shown in Table I were calculated from both
the initial slope of the NMRD echo decays and the mean-
square displacement. No significant differences were found
between these.

For water in the hydrogel the obstruction factors vary be-
tween 96.2% and 96.6% for simulations with 3 X 10* par-
ticles. This result coincides well with the NMR diffusometry
result, which is (96 = 1)%. It is very satisfying that the varia-
tion of the obtained obstruction factors for both water and
dendrimers in the three different identified three-dimensional
gel structures is small. This gives good confidence to both
the identified gel structures and the adaptive time-stepping
algorithm. For dendrimer G,, with a padding of 3 nm, the
resulting obstruction factors vary between 94.2% and 94.7%.
However, NMR diffusometry gives an obstruction factor of
(82 1)%. Table I also shows that the simulated obstruction
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TABLE 1. Obstruction factors for diffusion in three different
identified gel structures. R,, R;, and Rg are different padding
lengths believed to roughly correspond to water and the two den-
drimers. The number of particles used in the simulations varied
between 2 X 10* and 4 X 10*. The simulation values were deter-
mined after 100 ms of simulations. The real dendrimers have eth-
ylenediamine cores, polyamidoamine branches, and polyethyleneg-
lycol surfaces. Dendrimers were supplied by Dendritic
Nanotechnologies Inc. (DNT), Mount Pleasant, U.S.A. Two differ-
ent generation were used, G2 (DNT-315) and G6 (DNT-319), hav-
ing molecular weights of approximately 12 000 and 200 000 g/mol,
respectively. Experimental data were taken from Jarvoll et al. [17].

Gell Gel2 Gel3 Expt. NMR-
(%) (%) (%)  measurement (%)
R (water) 96.6  96.3 96.2 96+1)
R; (G2 dendrimer) 947 942 945 (82=*1)
Rg (G6 dendrimer) 90.1 89.8  89.8 40+1)

factor for dendrimer G, varied between 89.8% and 90.1%.
This should be compared with the obstruction factor of 40%,
as reported by Jarvoll et al. [17]. The results clearly demon-
strate that Brownian simulations give significantly higher
diffusion coefficients than what is measured by NMR diffu-
sometry for dendrimers G, and Gg. In contrast, the Brownian
simulations work well for water diffusion. The results in
Table I indicate that the reduction in diffusion rates for the
dendrimers is due to both obstruction and interaction. It is,
however, only the obstruction that is calculated by the
present Brownian simulations. In a real material the reduc-
tion in diffusion rate may be affected by attractive or repul-
sive interactions between the diffusants and the gel matrix.

3. Sticky-wall interaction of dendrimers

One way to treat the interactions between dendrimers and
gel matrix is to introduce a “sticky” boundary condition,
meaning that the dendrimer basically becomes arrested for a
very short moment in a small volume when it encounters the
gel strand [18]. The stickiness can reflect dendrimer en-
tanglement with the gel strand network or electrostatic inter-
actions. One way to test a simple interaction between par-
ticles and walls through simulations is to implement a
constant time delay every time a dendrimer reaches the gel
strands. Applying such a delay time shows that 30 and
250 ns delay times are needed in the G2 and G6 simulations,
respectively, in order to get good comparison between simu-
lation and NMR diffusometry data. However, these delay
times can just serve as indications of the interaction between
dendrimers and gel strands. In order to simulate the interac-
tion more physically correctly, escape probabilities based on
interaction potentials should be included. This will result in a
distribution of time delays.

Peters and Barenbrug [18] performed Brownian simula-
tions with sticky-wall assumptions. They assumed that the
stickiness of the wall can be described by a narrow but deep
potential well, adjacent to a reflecting wall. If a particle re-
sides in this well, it is defined as being stuck. In this work,
we have used a geometric distribution to model the residence
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FIG. 5. Effect of different residence times on the obstruction
factor. Sticky-wall interactions with geometrically distributed resi-
dence times are used in the adaptive simulations. The number of
particles is 2 X 10* in all simulations.

time on the gel strands. The reason for this is that using a
probability that depends only on At (and not on how long the
particle has resided at the wall) will generate a geometric
distribution for the number of time steps a particle resides at
a wall once it has stuck to it. This is coherent with the sticky-
wall model in [18].

Figure 5 shows the obstruction factors for simulations
with different mean values of the geometrical distribution.
We have simulated four different mean values for dendrimers
G2 and G6, respectively, using 2 X 10* particles and the
same three-dimensional gel structure. It can be seen that the
obstruction factor changes nearly linearly with the mean
value of the geometrical distribution for both dendrimers G2
and G6 in the regimes studied in this work. Note that it is
likely that the effect changes in a nonlinear fashion but that a
linear approximation is used locally in Fig. 5 to simplify the
estimation of the residence time. A comparison of the simu-
lated results with experimental NMR diffusometry results
presented in Table I shows that mean residence times of ap-
proximately 30 and 365 ns are required for dendrimers G2
and G6, respectively. This means that the effect of the resi-
dence time increases with the size of the dendrimer. Further-
more, the mean residence time for dendrimers G2 and G6
can be compared with the average distance that they would
propagate during the residence time if they were free. Den-
drimers G2 and G6 move in average about 1.5 and 7.4 nm
during the average residence time, which should be com-
pared with the radius of the dendrimers. Thus, if the sticky-
wall condition reflects entanglement between the dendrimer
and the gel strands, then the results indicate that dendrimer
G6 has a more intricate interaction with the gel strands than
dendrimer G2. This hypothesis is supported by the heteroge-
neous distribution of dendrimer end groups [19-21].

IV. DISCUSSION AND CONCLUSIONS

We have shown that an adaptive time-stepping algorithm
performs well for different validation cases; free diffusion,
diffusion in a box, and obstruction caused by sphere regu-
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larly distributed in a cubic lattice. Using this technique we
aim to estimate and predict the diffusion rate in the long-time
limit in very complex three-dimensional structures such as
supramolecular hydrogels. Three-dimensional hydrogel
structures were obtained from transmission electron micro-
graphs using a previously developed Markov chain Monte
Carlo simulation technique. Particles were placed in these
three-dimensional gels and our adaptive time-stepping algo-
rithm was applied. The simulation results for water diffusion
in three-dimensional gels showed good agreement with ex-
perimentally obtained diffusion rates using NMR diffusom-
etry. This is not so surprising since the diffusion rate of small
water molecules is expected to be mainly determined by ob-
struction, which is very small. However, the much larger
dendrimers have much more complicated interactions with
the surrounding structure than water. The simulation results
from dendrimer diffusion in three-dimensional gels overesti-
mate the dendrimer diffusion rate for both dendrimers G2
and G6 as compared with experimental NMR diffusometry
data. The effects of the obstructions from the gel strand net-
work and the finite size of the dendrimers were included in
the simulations. This means that obstruction alone cannot
explain the reduction of the dendrimer diffusion rate in su-
pramolecular gels. Here, we have taken a very pragmatic
approach by simply applying a sticky-wall boundary condi-
tion. The magnitude of the residence times found seems to be
relevant and the simulation gives important indications of the
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processes controlling the diffusion rate. Furthermore, the
spherical hard-sphere approximation of the dendrimer is a
very coarse representation of the dendrimer. The dendrimer
has a much more complex structure than that of a hard
sphere [19-21]. Thus, the dendrimers interact with the gel
strand network in a nontrivial way that retards the diffusion
rate. However, more elaborate simulations based on physi-
cally relevant potentials will be needed in order to fully un-
derstand the interaction process between the dendrimers and
the gel strands. It is, however, possible to explicitly simulate
the trajectories of the particles under the influence of a
particle-wall interaction potential. Initial simulations [9]
strongly indicate that our adaptive time-stepping algorithm
can be used for efficient future simulations in complex three-
dimensional geometries when the particle-wall interaction is
defined by an interaction potential.
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